31 research outputs found

    Beyond Site-Specific Criteria: Conservation of Migratory Birds and Their Habitats from a Network Perspective

    Get PDF
    Many populations of birds depend on networks of sites to survive. Sufficient connectivity that allows movement between the sites throughout the year is a critical requirement. We found that existing international frameworks and policies for identifying sites important for bird conservation focus more at the level of the individual site than on the site network and its connectivity. Only 21% of site criteria acknowledge the importance of movement networks for birds, and such network criteria were mostly (67%) qualitative. We suggest a three-step quantitative approach for informing conservation about the connectivity of bird movements (especially when migrating) from a network perspective, by reviewing current scientific knowledge. The first step is to construct a bird movement network by identifying sites frequently used by birds as ‘nodes’, and then define ‘edges’ from the probability of non-stop flight between each pair of nodes. The second step is to quantify network connectivity, i.e., the extent to which the site network facilitates bird movements. The last step is to assess the importance of each site from its contribution to network connectivity. This approach can serve as a tool for comprehensive and dynamic monitoring of the robustness of site networks during global change

    Beyond Site-Specific Criteria: Conservation of Migratory Birds and Their Habitats from a Network Perspective

    Get PDF
    Many populations of birds depend on networks of sites to survive. Sufficient connectivity that allows movement between the sites throughout the year is a critical requirement. We found that existing international frameworks and policies for identifying sites important for bird conservation focus more at the level of the individual site than on the site network and its connectivity. Only 21% of site criteria acknowledge the importance of movement networks for birds, and such network criteria were mostly (67%) qualitative. We suggest a three-step quantitative approach for informing conservation about the connectivity of bird movements (especially when migrating) from a network perspective, by reviewing current scientific knowledge. The first step is to construct a bird movement network by identifying sites frequently used by birds as ‘nodes’, and then define ‘edges’ from the probability of non-stop flight between each pair of nodes. The second step is to quantify network connectivity, i.e., the extent to which the site network facilitates bird movements. The last step is to assess the importance of each site from its contribution to network connectivity. This approach can serve as a tool for comprehensive and dynamic monitoring of the robustness of site networks during global change

    Successful conservation of global waterbird populations depends on effective governance

    Get PDF
    Understanding global patterns of biodiversity change is crucial for conservation research, policies and practices. However, the lack of systematically collected data at a global level has limited our understanding of biodiversity changes and their local-scale drivers in most ecosystems. We address this challenge by focusing on wetlands, which are among the most biodiverse and productive environments providing essential ecosystem services, but are also amongst the most seriously threatened ecosystems. Using birds as an indicator taxon of wetland biodiversity, we model time-series abundance data for 461 waterbird species at 25,769 survey sites across the globe. We show that countries’ effective governance is the strongest predictor of waterbird abundance changes as well as benefits of conservation efforts. Waterbirds are declining especially where governance is, on average, less effective, such as Western/Central Asia, sub-Saharan Africa and South America. Higher protected area coverage facilitates waterbird increases, but only in countries with more effective governance. Our findings highlight that sociopolitical instability can lead to biodiversity loss and also undermine the benefit of existing conservation efforts, such as the expansion of protected area coverage. Data deficiency in areas with less effective governance could cause an underestimation of the extent of biodiversity crisis. Alternative language abstracts are in Supplementary Information

    Flying Over an Infected Landscape: Distribution of Highly Pathogenic Avian Influenza H5N1 Risk in South Asia and Satellite Tracking of Wild Waterfowl

    Get PDF
    Highly pathogenic avian influenza (HPAI) H5N1 virus persists in Asia, posing a threat to poultry, wild birds, and humans. Previous work in Southeast Asia demonstrated that HPAI H5N1 risk is related to domestic ducks and people. Other studies discussed the role of migratory birds in the long distance spread of HPAI H5N1. However, the interplay between local persistence and long-distance dispersal has never been studied. We expand previous geospatial risk analysis to include South and Southeast Asia, and integrate the analysis with migration data of satellite-tracked wild waterfowl along the Central Asia flyway. We find that the population of domestic duck is the main factor delineating areas at risk of HPAI H5N1 spread in domestic poultry in South Asia, and that other risk factors, such as human population and chicken density, are associated with HPAI H5N1 risk within those areas. We also find that satellite tracked birds (Ruddy Shelduck and two Bar-headed Geese) reveal a direct spatio-temporal link between the HPAI H5N1 hot-spots identified in India and Bangladesh through our risk model, and the wild bird outbreaks in May–June–July 2009 in China (Qinghai Lake), Mongolia, and Russia. This suggests that the continental-scale dynamics of HPAI H5N1 are structured as a number of persistence areas delineated by domestic ducks, connected by rare transmission through migratory waterfowl

    A global threats overview for Numeniini populations: synthesising expert knowledge for a group of declining migratory birds

    Get PDF
    The Numeniini is a tribe of thirteen wader species (Scolopacidae, Charadriiformes) of which seven are near-threatened or globally threatened, including two critically endangered. To help inform conservation management and policy responses, we present the results of an expert assessment of the threats that members of this taxonomic group face across migratory flyways. Most threats are increasing in intensity, particularly in non-breeding areas, where habitat loss resulting from residential and commercial development, aquaculture, mining, transport, disturbance, problematic invasive species, pollution and climate change were regarded as having the greatest detrimental impact. Fewer threats (mining, disturbance, problematic native species and climate change) were identified as widely affecting breeding areas. Numeniini populations face the greatest number of non-breeding threats in the East Asian-Australasian Flyway, especially those associated with coastal reclamation; related threats were also identified across the Central and Atlantic Americas, and East Atlantic flyways. Threats on the breeding grounds were greatest in Central and Atlantic Americas, East Atlantic and West Asian flyways. Three priority actions were associated with monitoring and research: to monitor breeding population trends (which for species breeding in remote areas may best be achieved through surveys at key non-breeding sites), to deploy tracking technologies to identify migratory connectivity, and to monitor land-cover change across breeding and non-breeding areas. Two priority actions were focused on conservation and policy responses: to identify and effectively protect key non-breeding sites across all flyways (particularly in the East Asian - Australasian Flyway), and to implement successful conservation interventions at a sufficient scale across human-dominated landscapes for species’ recovery to be achieved. If implemented urgently, these measures in combination have the potential to alter the current population declines of many Numeniini species and provide a template for the conservation of other groups of threatened species

    Occurrence of the crab Euxanthus exsculptus (Herbst) in Gujarat

    No full text
    Volume: 92Start Page: 286End Page: 28

    Snow goose Anser caerulescens: An addition to the Indian avifauna

    No full text
    Volume: 88Start Page: 446End Page: 44

    Species distribution modeling in regions of high need and limited data: waterfowl of China

    No full text
    Abstract Background A number of conservation and societal issues require understanding how species are distributed on the landscape, yet ecologists are often faced with a lack of data to develop models at the resolution and extent desired, resulting in inefficient use of conservation resources. Such a situation presented itself in our attempt to develop waterfowl distribution models as part of a multi-disciplinary team targeting the control of the highly pathogenic H5N1 avian influenza virus in China. Methods Faced with limited data, we built species distribution models using a habitat suitability approach for China’s breeding and non-breeding (hereafter, wintering) waterfowl. An extensive review of the literature was used to determine model parameters for habitat modeling. Habitat relationships were implemented in GIS using land cover covariates. Wintering models were validated using waterfowl census data, while breeding models, though developed for many species, were only validated for the one species with sufficient telemetry data available. Results We developed suitability models for 42 waterfowl species (30 breeding and 39 wintering) at 1 km resolution for the extent of China, along with cumulative and genus level species richness maps. Breeding season models showed highest waterfowl suitability in wetlands of the high-elevation west-central plateau and northeastern China. Wintering waterfowl suitability was highest in the lowland regions of southeastern China. Validation measures indicated strong performance in predicting species presence. Comparing our model outputs to China’s protected areas indicated that breeding habitat was generally better covered than wintering habitat, and identified locations for which additional research and protection should be prioritized. Conclusions These suitability models are the first available for many of China’s waterfowl species, and have direct utility to conservation and habitat planning and prioritizing management of critically important areas, providing an example of how this approach may aid others faced with the challenge of addressing conservation issues with little data to inform decision making
    corecore